Research areas

Our lab aims to understand the crosstalk between RNA and chromatin. This includes understanding the molecular mechanism of RNA-mediated regulation pathways by Polycomb group (PcG) and Trithorax group (TrxG) proteins, RNA-mediated epigenetic regulation of cardiac development, and how epitranscriptomics and epigenetics crosstalk. Interdisciplinary approaches including protein and nucleic acid biochemistry, stem cell biology, CRISPR genome editing, high-throughput genome-wide sequencing, and computational techniques are used in the lab to tackle these fundamental questions.

Research area #1: RNA regulation of Polycomb group (PcG) and Trithorax group (TrxG) proteins

Polycomb group (PcG) and Trithorax group (TrxG) proteins play key roles in the epigenetic repression and activation of developmental genes. Growing evidence has suggested an important role of RNA in spatiotemporal balancing of the two groups of proteins.

Research area #2: Epigenetic regulation of cardiomyocyte differentiation and cardiovascular diseases

Epigenetic regulation is critical for cardiovascular development and misregulation frequently leads to diseases. These epigenetic events include histone modifications, DNA methylations, higher order chromatin architecture and RNA-mediated regulations. We use iPSC - cardiomyocyte differentiation as the model system to study these processes.

iPSC-derived cardiomyocytes

wild type clone A

wild type clone B

mutant clone A

mutant clone B

Research area #3: Decode the crosstalk between epigenetics and epitranscriptomics

Epigenetics is orchestrated by chemical modifications of histone and DNA, while epitranscriptomics focuses on the modifications and editing of RNA. Both processes are extremely important for cellular homeostasis, cell fate determination and development. Novel interdependency between these two conventionally distinct fields has recently been discovered, and crosstalk between epigenetics and epitranscriptomics could be more widespread than expected.